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Abstract-The melting process around a heated horizontal circular cylinder embedded in a phase change 
material has been analyzed by means ofnumerical methods. Both heat conduction and convection have been 
taken into account to treat this moving boundary problem. Difficulties associated with the complex structure 
of the timewise changing physical domain (melt region) have been successfully overcome by applying a 
numerical mapping technique (body-fitted coordinates). 

Numerical solutions have been obtained for Rayleigh numbers up to Ra = 1.5 105, Stefan numbers in the 
range 0.005 5 Ste $0.08 and for Pr = 50. The results are discussed in detail and indicate that the influence of 

natural convection has to be considered in all cases. 
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NOMENCLATURE 

thermal diffusivity ; 
finite difference operators (equation 

26); 
specific heat ; 
normal unit vectors in x, y direction ; 
dummy variables; 
= a . T/R;, Fourier number ; 
acceleration due to gravity; 
= (0, -9, 0), gravitation vector; 
film heat-transfer coefficient ; 
latent heat of fusion ; 
integer variables ; 
= “:y, - x,, yl, Jacobian of 
transformation; 

= [(f,,& - Cf$),,lIJ, operator; 
coordinate in normal direction ; 
= h . R,,/i, Nusselt number; 
coordinate control functions; 
= v/a, Prandtl number; 
= gflRi( T, - T,)/(w), Rayleigh 
number; 
distance from center of cylinder to 
solid-liquid interface; 
characteristic radius (equation 37); 
radius of cylinder ; 
shifting operator (equation 33); 
= cp( T, - T,)/h,, Stefan number ; 
time ; 
temperature ; 
velocity components along x, y 
direction ; 
.I I 

i.T 
r(cp)dr dv, 

cl RO 
volume of melt region ; 

*This contribution is dedicated to Prof. F. Bosnjakovic on 
the occasion of his 80th birthday. 

W, =(u, u, 0), velocity vector; 

x, y, Cartesian coordinate directions in 
physical plane. 

Greek symbols 
transformation factors (a = xi + J+ ; 

/J = x,$X9 + y<yq; y = x: + y?); 
thermal expansion coefficient; 
finite difference operators (equation 

26); 

=(T- T,)I(T,- 7-r), dimensionless 
temperature ; 
thermal conductivity ; 
kinematic viscosity ; 
coordinate directions in transformed 
plane ; 
density ; 
= Fo . Ste, dimensionless time; 
parameters of control functions ; 
angle ; 
stream function ; 

=(O, 0, $), vector potential; 
= u, - ul, vorticity ; 

=(O, 0, w), vorticity vector; 
= era, + e,d,, nabla operator; 
= a,, + c?,,, Laplace operator ; 
= [cd;: - 2//h?,,, + $,,,, + J’(P?,, + Qa,)]/J’, 
transtormed Laplace operator. 

reference point ; 
cylinder ; 
fusion ; 
interface ; 
based on R,; 
solid ; 
wall ; 
derivatives with respect to n. x, y. t; 
derivatives with respect to 5, r~, r. 



138 H. RIEGER, U. PROIAHN and H. BEER 

Superscripts 

(k), iteration level ; 
-3 mean value. 

I. INTRODUCTION 

HEAT TRANSPORT during solid-liquid (melting) and 
liquid-solid (solidification) phase change plays an 
important role in numerous naturally occurring and 

technical processes. In many technical areas, such as 
casting technology, thermal energy storage design and 
nuclear power accident analysis, knowledge of the 
governing hydro- and thermodynamic phenomena is 
of great importance. 

In the past, most of the analyses dealing with phase 
change problems have taken into account heat con- 
duction as the sole heat transfer mechanism. Physical 
situations, however, in which heat conduction acts 
alone during phase change will not often be observed, 
because even small temperature variations in the melt 
can activate natural convection flow due to buoyancy 
forces. This effect, in turn violates the existing tempera- 
ture distribution and can amplify the strength of the 
fluid flow in connection with a total change in the heat 
transfer characteristics. This interaction between two 
of the basic heat transport mechanisms is quite 
evident, when melting processes in latent heat-of- 
fusion thermal energy storage systems are investigated. 
Such systems offer advantages in some applications, 
i.e. solar energy systems, because of their great latent 

heat storage capacity, their small density variations 
during phase change and relatively small temperature 
differences in the operation phase. Pipes, or bundles of 
pipes, embedded horizontally in a phase change 
material (PCM) are possible technical system con- 
figurations which have been studied recently in a 
number of experimental and theoretical works [l-6]. 

Experimental investigations of melting process 
around a heated single tube or cylinder show clearly 
that only in the earliest stage of the process the heat 

transport mechanism is due to conduction alone, 
whereas natural convection becomes dominant sub- 
sequently. Photographs and shadowgraphs of the 
melting zone [l-6] demonstrate this fact. It can be 
observed that the melting front moves faster upward 
than downward in the course of the melting process 
and forms a liquid&olid interface, which is somewhat 
pear-shaped. Experiments by Goldstein and Ramsey 
[4] indicate that different shapes of the melting 
interface resulted in spite of similar initial and boun- 
dary conditions. 

These experimental findings indicate, that the physi- 
cal system is very sensitive to small disturbances 
during the test runs and to the provided initial and 
boundary conditions. Also an initial subcooling of the 
solid, which causes heat conduction in the frozen 
material, can markedly affect the melting characteris- 
tics of the system [7]. Therefore a legitimate attempt at 
an analytical solution with idealized physical con- 
ditions may be made in order to gain some insight into 

the underlying basic heat transfer mechanism of the 
melting process around a horizontal circular cylinder. 

Closed form analytical solutions of the problem 
seem to be impossible due to the complexity of the 
governing equations and the additional difficulties 
associated with the moving interface. Until now only 
two papers were available [l, 81 which attacked this 
problem on the basis of perturbation methods. But the 
valid range of these series solutions is limited to 
situations, where natural convection flows are weak or 
the melting time is rather short. For longer melting 
times and fully developed convection flows a direct 
solution approach via discrete numerical methods 
seems to be reasonable. 

Finite-difference solutions to the melting problem 
around a vertical tube were first presented by Sparrow 
et al. [9] who simplified the set of governing equations 
because of computational difficulties arising with the 
treatment of the interface. The finite element method 
was chosen by Gartling [lo] to solve blockage prob- 
lems in pipes and to investigate melting processes in 
materials with internal heat sources. In the present 
study a numerically generated body-fitted coordinate 
system was used, in conjunction with the finite differ- 
ence approximation, to eliminate the complicating 
influence of an arbitrarily shaped physical region. This 

technique has also the capacity to handle timewise 
changing solution domains and is applied to natural 

convection problems with moving boundaries and 
phase change for the first time. 

The physical model analyzed here is pictured 
schematically in Fig. 1. A horizontal cylinder of radius 
R, is embedded in the frozen phase change material, 
which is kept at fusion temperature. The melting 
process begins at the time T = 0. when the temperature 
of the cylinder is raised to a constant value above the 
fusion temperature. Heat conduction in the solid is 

FIG. 1. Physical model. 
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neglected and symmetry to the vertical midplane 
(y-axis) is assumed in order to reduce the computa- 
tional effort. 

2. MATHEMATICAL FORMULATION 

Under the assumption of an incompressible New- 
tonian fluid with constant properties (except the 
density), the governing equations, describing the con- 
servation of mass, momentum and energy, may be 
written in Cartesian coordinates as follows: 

To simplify the physical model under consideration, 
any variation of density through phase change as well 
as heat conduction in the solid is neglected. By 
assuming, that the solid is kept at its fusion tempera- 
ture (Fig. I), the entire heat transferred to the interface 
is utilized for melting and therefore determines the 
propagation speed and the shape of the moving 
interface. 

This fact is stated by an energy balance at the 
melting front, which is written as: 

v.w=o, (1) _ iT, = Ph, n, (13) 

w,+(w.V)w= -&?+vV2w+G p-1 , 
PO ( > PO 

(2) 

T, + V . (wT) = aV2 T. (3) 

In studies of natural convection phenomena it is 
convenient to introduce a linear relationship between 
density and temperature into the buoyancy term, 
known as the Boussinesq approximation 

P = Po[l - iJo--~,,I. (4) 

In the case of a 2-dim. flow of incompressible fluid the 
governing set of equations can easily be reduced by 
defining the stream function and vorticity as new 
dependent variables: 

w=VxY, (5) 

sz=vxw. (6) 

Substituting (5) into (6) and making use of (1) gives 

o= -V2$, (7) 

while the elimination of pressure in (2) with the aid of 
(6) leads under consideration of (4) to the transport 
equation of vorticity: 

W, + V ’ (ww) = vV20 + CJ~ TX. @I 

Equations (3), (7) and (8) should be brought into non- 
dimensional form by defining the following dimen- 
sionless variables and groups, in order to reduce the 
number of parameters: 

(.w, Y)* = (x, y)/R,, 

(u, L’)* = (u, v)R,la, 

0 = (T- T,MT, - T,), 
(9) 

T = (at/R~Xc,(T,- T,)/h,)=(Fo)(Ste), 

Pr = v/a, 

Ra = fig Rz( T, - Tf)/(av). 

Asterisks denote dimensionless quantities, which have 
been omitted in the non-dimensional form of the 
governing equations given below: 

Stew, + V. (cow) = Pr V’w + Ra Pr 0,. (10) 

w= -vz* (11) 

Ste 8, + V . (Bw) = V28. (12) 

In terms of dimensionless variables, equation (13) 
becomes 

-8, = n,. (14) 

To complete the mathematical description of the 
problem the following initial and boundary conditions 
are specified : 

T=O: e,=e,=o W4 

z>O: @,=l; u=u=O atthewall (15b) 

8, = 8, = 0; u = u = 0 at the interface (1%) 

e,=o; u=o at the symmetric line 

(vertical midplane) (15d) 

The kinematic no-slip boundary conditions at the wall 
as well as at the slid-liquid interface are required on 
the assumption of constant density during phase 
change. The fact, that the physical region increases and 
changes its shape with time poses a moving boundary 
problem, in which the location of the interface is not 
known a priori, but is part of the overall solution. For 
the treatment of such problems in the context of 
discrete numerical methods there are basically two 
approaches which differ in the type of mesh used in the 
computation. 

The fixed mesh approach employs a grid that is fixed 
in space and time and in which the phase boundary 
traverses the mesh system during the evolution pro- 
cess. One advantage of such an approach Seems to be 
the ability to handle relatively complex interaction 
problems in conjunction with a simple formulation of 
the governing set of equations. However, a weak point 
of the fixed mesh approach is the treatment of all the 
boundary conditions at the moving interface, which is 
spread into a transition zone. This feature is important 
so far as the quality of any numerical solution with 
discrete methods is essentially dependent upon the 
approximation of the boundaries in a general solution 
domain and on the formulation of the required 
boundary conditions thereof. In fluid mechanical 
problems, strong gradients of the dependent variables 
appear at the boundaries, which favour, with the 
above-mentioned aspects in mind, the application of 
time dependent mesh systems. This alternative method 
for moving boundary calculations allows the 
computational grid to change with time, and 
maintaining the interface coincident with a particular 
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mesh line. So the implementation of latent heat effects 
and the formulation of boundary conditions is easy 
and straightforward. To handle arbitrarily shaped 
solution domains, a numerical mapping technique 
was chosen which generates a body-fitted coordinate 
system, and offers some possibilities in the spacing and 
structure of the grid system. By a transformation of the 
moving physical grid system, which is in general non- 
orthogonal, onto a rectangular and uniformly spaced 
computational domain, which is fixed in time and 

space, distortions of the physical grid system can easily 
be controlled and interpolations during the 
computational process can be minimized. The 

application of the mapping technique to the melting 
problem is described in the following section. 

3. NUMERICAL PROCEDURE 

3.1. Transformatiorl technique 

The employed numerical mapping technique (Fig. 2) 
is based on a method of automatic numerical gener- 
ation of a general curvilinear coordinate system and 

was first developed and applied to fluid mechanical 
problems by Thompson et al. [ 111. 

The boundary-fitted physical coordinate system is 
created by numerically solving the following system of 
elliptic equations : 

Px = 0, U6a) 

Py=o, (16b) 

with Dirichlet conditions at the boundaries. The 

transformed Laplace operator (definition see nomen- 
clature) involves coordinate control functions P and 
Q, which may be chosen to influence the structure of 
the grid as desired. Under the assumption of symmetri- 

cal boundary conditions the solution domain is a 
simply connected region. For such a configuration it is 
possible to use an improvement proposed by 
Middlecoff and Thomas [12], which eliminates the 
problem of choosing relevant control functions. 
This method uses general source terms P and Q : 

T =T2rT, r., 
: 
” .<I 

,h, 
\\ 5’gx.Y.T) 

I ” > 
! /’ ‘\* / ‘, 

r)=q(x.y.T) 

T I T, 

Q(L rl) = x(5, rl)(rl,2 + $1, (17b) 

where the parameters C#J, 1 are evaluated locally at the 
boundaries of the computational domain. The para- 
meters at the interior grid points are then obtained by 
simple linear interpolation. Substitution of (17a, b) 
into (16a, b) and requiring that the given boundary 
values satisfy appropriate limiting forms of the result- 
ing equations along the boundary of the compu- 
tational domain, leads to the following equations for 
the evaluation of c$, x: 

c’ = const: -y ,,‘, + xx ,, = 0, (lga) 

Y,,,, + %Y,, = 0, (tgb) 

q = const: .xy: + I#JX: = 0, (18~) 

?‘r: + #y: = 0. (fgd) 

Since there are always two equations to calculate one 
parameter, in principle either can be used. In practice, 

the best results are obtained by employing that 
equation for which the first derivative is maximal at a 

given point. With such a treatment all grid systems are 

well structured. 

3.2. Transformed governing equations 

To solve the given set of governing equations 
(lO))( 12) with the corresponding boundary conditions 
on the computational rectangular field, all equations 

have to be transformed. This leads to the following, 
somewhat more complicated, equations and boun- 
dary conditions : 

Ste g + L*w = Pr v2w + Ra Pr L’O, (19) 

Q2* = --w, (20) 

Steg + L*B = V28, (21) 

where the operators r/’ F and Xv’ are given in the 
nomenclature and Bf/Qr is defined as 

Uf 
z =f, - -y, L’lf+ Y, LX? (22) 

physlcol plane transformed plane 

FIG. 2. Illustration of the transformation method. 
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Boundary conditions : 

5 = fmin: $ = 0; w = 0; at?, - @I, = 0, (23a) 

< = &,,,,: li/ = 0; o = 0; a@; - @, = 0,(23b) 

v = qmin: $ = 0; 0 = - 3; @ = 1, (23~) 

r$ rl= qmsx: + = 0; w = - ---Lil; B = 0 Jz > G-1 

(23a, b) are symmetrical boundary conditions at the 
vertical midplane. The conditions, which move the 
boundary at q = q,_.( t4), lead under consideration of 
(23d) to the following expression for the timewise 
change of the boundary grid points in the physical 
plane : 

Yr = - F @,, . Wb) 

If the conditions (24a, b) are applied rigorously in 
the context of the numerical mapping technique the 
grid can be deformed wildly under some circum- 
stances, because all grid points move towards one 
point if the solid-liquid interface is concave, and 
spread to the lower and upper side if it is convex. To 
overcome this problem an implicit re-zoning process is 
used to hold the desired structure of the grid system. 

This process is accomplished by sphne interpoiatio~ 
of the boundary grid points along the solid-liquid 
interface at time levels z and r + Ar to redistribute the 
grid points at the time level r + AZ without loss of 
accuracy. Since the numerical generation of the physi- 
cal coordinate system consists of the solution of a 
Didchlet problem, well distributed boundary points 
lead automatically to a properly structured physical 
net. Coordinate systems created with this method are 
shown for three different times in Fig. 3. 

3.4. Computational details 
The transformed plane, which is a rectangular 

domain, is covered by a uniform mesh whose coor- 
dinates are denoted by the integer variables i and j, 
where 

(5, ~)=(5, V)min+(i, j)- 1 1 <i, js:IMAX, JMAX 
(25) 

Using this convention, variables at grid points are 
denoted by f(i, j). Now it is convenient to define the 
following set of finite difference operators: 

S,f= Sti i- 1, j) -f(i, j), (26a) 

S:f= f(i, j) -f(i - 1, j), (26b) 

ZA,f = f(i f 1, j) + f(i, j), (2&l 

2A,f= f(i, j) I- f(i - 1, j). (26d) 

FIG. 3. Grid systems at different times. 

With these definitions the central difference approxi- 
mations of the first, second and mixed derivative may 
be written as: 

For the derivatives with respect to ye similar ex- 
pressions can be obtained. With the exception of the 
convection terms, all terms of the governing equations 
(19)(21) are expressed by the approximations 
(28)-(30). There are basically two alternative ways to 
approximate the convection terms in (19) and (21X first 
to use the central difference approximations (CDA) 
and second to use one-sided finite difference ex- 
pressions (UDA) or combinations thereof. Although 
the first method has a second order truncation error it 
leads to numerical instability for Reynolds numbers 
greater than 2 based on the mesh width. The reason for 
this is, that the coefhcient matrix of the finite difference 
analogue does not remain diagonal dominant. On the 
other hand, by employing forward or backward differ- 
ence approximations, the instability can be circumven- 
ted, but some numerical diffusion will be introduced 
[13]. Since the produced artificial viscosity increases 
with increasing Rayleigh numbers, the results will 
deviate more and more from those of the 2nd-order 
central difference expressions. Two possible schemes 
for the approximation of the convection terms are: 

CDA: W), = &&W)l~ 

UDA: (JF), = (S-f) (5;F) + (S+f) (b’,F), 

where the shifting operator S is defined as 

S’f= 0.5(fk If 1). 

(31) 

(32) 

(33) 
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The algebraic set of equations is solved simultaneously 
by the Strongly Implicit Procedure (SIP) [14]. This 
solution technique has been successfully applied to free 
convection and conduction problems by the present 
authors [15, 161, where further details of the method 
are given. Therefore only the main aspect, which 
favours the application of SIP is described here. 

By using matrix notation, SIP leads, starting with 
the original system of equations 

MX=Z 

to the following iteration procedure : 

(34) 

M = LU, 

L’W VW+ 1) = R’W 

(35a) 

(35b) 

UW’ AX@+ 1) = v(k+ 1) (35c) 

In the aforementioned equations M is the altered 

coefficient matrix, so that a sparse LU decomposition 
is possible, R is the residual vector, and AXck+l) is 
defined as Xck + ‘) - Xck), where X is the solution vector. 

Now SIP offers the possibility to get numerical 

stability by using the approximation of (32) for the 

coefficient matrix M and still permits to obtain central 
difference accuracy by the application of (31) for the 
residual vector R. Since it is impossible to start the 
computations with an infinitly small volume, the initial 
temperature distribution and the appropriate time 
must be calculated for an assumed thin and concentric 
melt region. In view of the fact that at the beginning of 
the melting process heat conduction dominates, 
analytical but only one-dimensional solutions exist 

and are given by Eckert and Drake [17]. For the small 
Stefan numbers in conjunction with the very thin 
initial melt layer thickness an approximate solution 
yields sufficiently accurate results for the starting time 
and temperature distribution. The solution of the finite 
difference analogue of (16, 19, 20, 21) is performed in 
such a manner that (19X (20) and (16), (21) are solved in 
a coupled and simultaneous way, because these equa- 
tions have the strongest coupling. 

The computations were started with a time interval 
Ar = 10m4, which was raised, depending on the 
parameters, during the iteration process up to values of 
10m3. The next time step was started, when the 
following criterion 

f (k+U(i,j) -f’k’(i,j) 

Max f'"")(i,j) 
< 5. 1o-5 (36) 

was satisfied for all variables. 
The desire to use small mesh intervals for higher 

accuracy had to be compromised by limitations im- 
posed by the available computing equipment (DEC- 
PDP 10/70). So, all computations were performed with 
a grid system containing 31 x 21 nodal points as a 
compromise between accuracy and computing time. 

4. RESULTS AND DISCUSSION 

All computations presented have been performed 
with a constant Prandtl number and under the assump- 

5te=0005 Ra=lOOOO Sk=002 Ra = 37500 

Ste.004 Ra=75000 ste=ooa Ra=150000 

FIG. 4. Time history of the melted region for various Rayleigh 
and Stefan numbers (dimensionless time 5 as parameter). 

tion of a constant tube diameter. This has been done 

because the numerical results by Sparrow et al. [9] 
have not indicated any significant dependence on 
Prandtl number in the range 7 5 Pr 5 50. The de- 
pendence on the Stefan number is solely taken into 
account by the dimensionless time t, which is a 

product of Fo and Ste. In the range 0.05 5 Ste 5 0.15 
no additional parametric dependence on Ste was 
found [9]. This has been verified for the present 
configuration in some test runs. In order to give an idea 
about the shape of the melting zone during the 
evolution process, interface contours are discussed 
first, followed by some representative temperature and 
flow field distributions. Finally the calculated heat 
transfer results are presented. 

Figure 4 shows transient interface positions for 

various Rayleigh and Stefan numbers. From the 
calculated shapes, only at the very beginning a 
dominating role of heat conduction can be deduced. 
However, after this short period the melting front 
moves concentrically outward, an increasing natural 
convection flow alters this kind of a nearly uniform 
propagation. The formation of a thermal plume above 
the cylinder gradually influences the local heat transfer 
rate and therefore the melting characteristics of the 
system. At the top of the melt region the impinging 
plume strongly affects the melting process and leads to 
a faster upwardly directed growth of the interface. An 
inverse effect can be stated in the lower part of the 
annulus. The relatively cold fluid flowing down along 
the solid-liquid interface inhibits heat transport due to 
conduction in this part. At the bottom these counter- 
acting transport mechanisms lead to an almost total 
stop of the melting process. It is evident, that the 
limiting gap width at the bottom becomes smaller with 



Analysis of the heat transport mechanisms 143 

15 

r - R0 

2Ro 
10 

FIG. 5. Local interface positions as function of time (a) Ra = 10,000, Ste = 0.005 ; (b) Ra = 37,500, Sre = 
0.02; (c) Ra = 75,000, Ste = 0.04; (d) Ra = 150,000, Ste = 0.08. 

increasing Rayleigh number. Inspection of the time- 
wise development of the melt zone for various tem- 
perature differences (expressed by a proportional 
change of Ra and Ste), reveals a general trend: the 
gradients of the interface slope in the top region of the 
melting zone increase with increasing Ra and Ste. In 
this context the case for Ra = 150,000 is noteworthy. 
Turning points in the interface contours indicate the 
formation of ‘keyhole’ shapes, which were also obser- 

ved in the experiments by Goldstein and Ramsey [4]. 

For a quantiative description of the melting front 
propagation a suitable and more instructive repre- 
sentation is chosen. In Fig. 5 the ratio of the radial melt 

layer thickness to the tube diameter is plotted as a 
function of the dimensionless time z. The curves are 
parameterized by the angle of perimeter. In all graphs 
the concentric movement of the phase boundary due to 
heat conduction as well as the temporal validity of that 
transport mechanism can be recognized. After natural 
convection sets in a faster propagation of the interface 
in the upper portion of the melt zone causes a fanning 
out of the corresponding curves, with increasing 
gradients for advancing angles of perimeter. Higher 
Rayleigh numbers cause a faster growth of the melt 
layer thickness in the top region. After a short 
transition period the curves reveal a nearly linear time 

FIG. 6. Melted volume as function of time (a) Ra = 10,000, Ste = 0.005 ; (b) Ra = 37,500, Sre = 0.02 ; (c) Ra 
= 75,000, Ste = 0.04; (d) Ra = 150,000, Ste = 0.08. 
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dependence, for constant angle condition. The increase 
of molten volume with time reveals an analogous 
behaviour (Fig. 6). For the regime of developed natural 
convection, an approximately linear variation of the 
molten volume results. This was confirmed by Gold- 
stein and Ramsey [4] as well as by Bathelt et al. [3], 
investigating experimental melting around a heated 
horizontal cylinder for a constant heat flux condition. 
After a short period of melting the recorded tempera- 
ture distributions around the cylinder surface [4] 
proved to be quite uniform, so that the boundary 
conditions seem to be comparable. The nature of the 
resulting flow pattern (streamlines and temperature 
fields) in the course of the melting process is well 
illustrated by Fig. 7 for six different times. As a 
representative example the case for Ra = 37,500 and 
Ste = 0.02 is presented. 

The first picture (r = 0.054) characterized by con- 
centric isotherms and a weak and symmetric flow field, 
is valid for the very first moments where heat eon- 
duction dominates. The maximum value of stream- 
function is located at the horizontal midplane of the 
annulus. Time level t = 0.124 can be related to a 
transition phase, where heat transfer by conduction is 
superseded by convection in the upper portion of the 
melt zone. With increasing time, a thermal plume 
develops by which hot liquid is conveyed to the top of 
the gap. Thus heat transfer at the upper stagnation 
point is improved and leads to a faster propagation of 
the melting front. The expansion of the melt zone in the 
upper part is accompanied by a shifting of the vortex 
center to a position of about 18” from the top (T 
= 0.457). At the time 7 = 0.457, the temperature 
distribution shows a nearly isothermal core in the 
vicinity of the centre of rotation and strong gradients 
around the cylinder and along the upper part of the 
interface. This behaviour indicates the existence of a 
flow regime in which heat transfer is governed mainly 
by boundary layers. The temperature fields in the 
lower part of the melt zone reveals, that the heat 
transfer to the phase boundary and its movement 
respectively, decrease monotonically. 

Attention is now focused upon the heat transfer 
results. In Fig. 8(a) the instantaneous local heat 
transfer coefficients at the cylinder surface as well as at 
the interface are plotted vs the dimensionless time t. 
Wigh values of local coefficients at the very beginning 
associated with a sharp decrease are characteristic for 
transient heat conduction. The end of this period of 
nearly l-dim. behaviour is indicated by a spanwise 
spreading into individual curves. The local heat trans- 
fer coefficients at the cylinder surface pass a minimum, 
which is attained for greater angles at later times and 
rise smoothly in the following time history. At the 
interface the situation is somewhat different. For 
parameter values cp < 1200 a monotonic decrease is 
observed, in contrast to the upper part of the interface, 
where after a minimum, a maximum of the cor- 
responding curves can be recognized. This is pro- 
nounced especially for values 9 -+ 180”. With increas- 

0.054 0.124 

0.196 

0,382 

........ . . ::':,.:.' :. : ..: ....... 
0.282 

FE. 7. Flow pattern and temperature distributions at dif- 
ferent times ? for Ra = 37,500 and Ste = 0.02. 

ing time the local heat flux at all positions decreases 
almost linearly. This timewise variation of the local 
heat transfer coefficients after transition was also 
observed experimentally by Goldstein and Ramsey 
[4]. From Fig. S(b) it can be stated that the transition 
stage during the melting process is shorter for higher 
Rayleigh numbers. In order to find some characteris- 
tic trends only the limiting parameters 50 = 0” and cp = 
180” are displayed for various Rayleigh numbers. A 
comparison with Fig. 8(a) shows qualitatively the 
same behaviour in the whole range of studies. The 
faster onset of natural convection as well as the 
increasing strength of fluid motion for higher Rayleigh 



Analysis of the heat transport mechanisms 145 

Y 

Nut 
6- Q= 

0 

ix 
90 

L- 
120 

150 

2- 

0 , I , r I 

NUi 
6 

0 0.1 0.2 a3 az a5 
T 

(a) 

10 
I 

NUC 
8 

6 

4 

2 

0 

10 

NUi 
8 

/ I I , , 

0 
0 dt 0.2 a3 0.4 

T 

(h) 

FIG. 8. Local heat transfer coefficients as function of time (a) 
Ra = 37,500, Ste = 0.02; (b)-Ra = 10,000, Ste = 0.005; 
-- - Ra = 37,500, Ste = 0.02; - I-. Ra = 75,000, Ste = 0.04; 

--- Ra = I50,000, Sre = 0.08. 

numbers tends to accentuate the above-mentioned 

effects. 
In order to find a general correlation for the 

experimentally determined overall heat transfer coef- 
ficients Bathelt and Viskanta [5] proposed an empiri- 

cal correlation in the form of NuR, = C . (Ra,=/Ste)“. 

The characteristic length R, of the melt layer thick- 
ness is defined as : 

An appropriate repre~ntation of the calculated and 
the experimental results is given in Fig. 9. It is quite 
evident that the experimental results [5] can be well 
approximated by the correlation proposed. The calcu- 
lation, in contrast, shows a different behaviour. For the 
di~greement between the ex~rimental and numerical 
data there can be many reasons. As pointed out by 
[Is], some errors could have been introduced in the 
determination of the melting rate from photographs, 
by numerical differentiation of the interface positions. 
An essential influence could also be expected from the 
occurrence of an oscillating plume, in the range of 
Rayleigh numbers studied experimentally. 

From a physical point of view the numerical results 
seem to be more reasonable. After a transition period 
which is governed by heat conduction, increasing 
Rayieigh numbers should lead to greater values of the 
overall heat transfer coefficient for the same melt layer 
thickness as expressed by the calculated results. This is 
a consequence of the fact that in the quotient Ra,jSte 
the driving temperature difference is eliminated and 
therefore this term only provides geometrical infor- 
mation. Moreover the use of R, as a characteristic 
length seems not to be a good choice, since for the 
practical application an additional relation between 
the geometrical form and time must be provided. 
Therefore a representation of the overall heat transfer 
coefficients, based on the constant cylinder radius, as 
function of time should be favoured. The calculated 
overall heat transfer coefficients at the cylinder surface 
as well as at the interface are plotted in Fig. 10 in form - 
of Nu/Ra” vs time 5. The graphs show, that after a 
transition stage, all curves coincide with the nearly 
constant value of quasi-steady melting. Since this 
phase is independent of time the quasi-steady melting 
process around a circular cylinder can well be approxi- 
mated by 

- 
Nu = C.Ra”, (38) 

where C z 0.13, n = l/3 for thecylinder and C E 0.14, 
n = l/4 for the interface give only small deviations. 

5. CONCLUDING REMARKS 

The characteristics of the melting process around a 
circular cylinder were analyzed. A timewise changing 
grid system in conjunction with the finite difference 
method was used to handle the expanding physical 
domain. The boundary-fitted coordinate method has 
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proved to be a flexible tool for the treatment of moving 
boundary problems. The shape of the molten region as 
well as the flow and temperature distributions were 
numerically obtained by finite difference approxi- 
mations of the governing equations. The results of the 
present study can be summarized as follows: 

As expected from available experimental data, natu- 

ral convection is the dominating mode in the heat 
transfer mechanism for almost the whole melting 
process. In any analysis of such processes the effect of 
the fluid motion may not be neglected. At the very 
beginning of the process heat conduction acts soieiy 

OI 
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Ra"L 08 
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FIG. 10. Overall heat transfer coefficients at the cylinder and at 
the liquid-solid interface. -- Ra = 10,000, Ste = 0.005 ; ~~ 
Ra = 37,500,Ste = 0.02;- .- .Ra = 75,000,Ste = O.O4-- 

Ra = 150,000, Sre = 0.08. 
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ANALYSE DES MECANISMES DE TRANSFERT THERMIQUE PENDANT LA FUSION 
AUTOUR D’UN CYLINDRE CIRCULAIRE ET HORIZONTAL 

R&uti-On ltudie par des mithodes numiriques la fusion autour d’un cylindre circulaire et horizontal 

noyk dans un mattriau g changement de phase. La conduction et la convection thermique sont prises en 
compte pour traiter ce probltme g frontiere mobile. Des difficult& assocites B la structure complexe du 
domaine de changement physique au tours du temps (rigion de fusion) ont ttC surmontbes avec succts en 
appliquant une technique de maillage numdrique (coordonnles adapttes & la giomktrie). 

Des solutions numlriques ont It6 obtenues pour des nombres de Rayleigh allant jusqu’8 1,5 lo’, des 
nombres de Stefan entre 0,005 et 0,008 et pour Pr = 50. Les rtsultats sont discutks en dCtail et ils indiquent 

que l’influence de la convection naturelle a 6td considkrte dans tous les cas. 

Zusammenfassung-Der Schmerlzvorgang urn einen, in eine schmelzf%hige Substanz eingebetteten, 
waagrecht liegenden Zylinder wurde mit Hilfe einer numerischen Methode untersucht. Beide 
Wirmetransportmechanismen-WLrmeleitung und Konvektion- wurden bei der Behandlung dieses 
Problems mit sich bewegenden Grenztltichen beriicksichtigt. Schwierigkeiten, bedingt durch die komplexe 
Form des sich zeitlich tidernden LSsungsgebiets (Schmelzraum), lie&n sich durch die Anwendung einer 
numerischen Transformationsmethode beseitigen. 

Die numerischen Berechnungen umfassen L6sungen fiir Rayleigh-Zahlen bis Ra = 1.5 . lo’, Stefan- 
Zahlen im Bereich 0.005 5 Ste 5 0.08 und einer Prandtl-Zahr Pr = 50. Die Ergebnisse werden ausfiihrlich 
diskutiert und zeigen, daR bei der analytischen Betrachtung derartiger Schmelzprozesse der EinfluB der 
natiirlichen Konvektion utter keinen Umsttiden vernachllssigt werden darf. 

MCCJIE~OBAHME MEXAHL13MA nEPEHOCA TErLJIA HPM ~JIABJ’IEHML~ BOKPYI- 
I-OPW30HTAflbHOl-0 KPYrJIOrO UMJIMHAPA 

AHHOTauHR ~ %iCJleHHbIMN MCTOAaMW aHaJlH3IipyeTCR IIpOIIeCC IIJIaBJIeHm BOKpyr HarpeBaeMOrO 

rOpH30HTa_UbHOrO Kpyr,IOrO L,K”HHA,,a, noMeIueHHor0 B MaTepaan, npeTepnesaloI@? @asoBbIE 

nepexon. B paccMaTpIiBaeb4ok 3anaVe c ABWK~U&hl rpamiuefi yWiTbIBa~TCa KBK TenAOIIpOBOAHoCTb, 

TaK Ii KOHBCKLIAII. k’kIIOJIb3OBaH&ie ‘IWCJIeHHOTO MeTOAa oTo6pameHm? (KOOpAH”aTb1. CB113aHHbIe C 

TeJIOM) PO3bwiHJIO A36e)KaTb TpyAHOCTe8, BOSHHKBIOUIWX IIpH paCCMOTpeHHH CJIO~HO8 CTpyKTypbI 

Ii3MeHflmUIefiCR BO BpeMeHa @i3WIeCKOti o6nacTe (o6nacTw IIJIaBJIeHAR). %iCneHHbIe pelueHun nony- 

qeHbI nnn q&icen Penes no Ra = 1.5. 105, %icen CTe@aHa B AIaanasoHe 0,005 5 Ste 5 0,08 H Ann 
Pr = 50. nOApO6HO o6Cyn(AeHbI pe3yJIbTalbI Ii nOKa3aH0, qT0 BO BCCX CnyqaaX CneAyeT y‘IHTbIBaTb 

BJIWIlHHe eCTeCTBeHHOfi KOHBeKUNIi. 


